Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 1 of 1
Back to Result List

Modular Classifier Ensemble Architecture for Named Entity Recognition on Low Resource Systems

  • This paper presents the best performing Named Entity Recognition system in the GermEval 2014 Shared Task. Our approach combines semi-automatically created lexical resources with an ensemble of binary classifiers which extract the most likely tag sequence. Out-of-vocabulary words are tackled with semantic generalization extracted from a large corpus and an ensemble of part-of-speech taggers, one of which is unsupervised. Unknown candidate sequences are resolved using a look-up with the Wikipedia API.

Download full text files

Export metadata

Additional Services

Share in Twitter    Search Google Scholar    frontdoor_oas
Metadaten
Author:Christian Hänig, Stefan Thomas, Stefan Bordag
URN:https://nbn-resolving.org/urn:nbn:de:gbv:hil2-opus-3019
ISBN:978-3-934105-47-8
Document Type:Conference Proceeding
Language:English
Date of Publication (online):2014/11/25
Release Date:2014/11/25
Tag:NER; Named entity recognition
GND Keyword:Computerlinguistik
Source:Workshop Proceedings of the 12th KONVENS 2014
PPN:Link zum Katalog
Institutes:Fachbereich III / Informationswissenschaft und Sprachtechnologie
DDC classes:400 Sprache / 400 Sprache, Linguistik
Collections:KONVENS 2014 / Workshop Proceedings of the 12th KONVENS 2014
Licence (German):License LogoCreative Commons - Namensnennung 3.0