A Language-independent Sense Clustering Approach for Enhanced WSD
- We present a method for clustering word senses of a lexical-semantic resource by mapping them to those of another sense inventory. This is a promising way of reducing polysemy in sense inventories and consequently improving word sense disambiguation performance. In contrast to previous approaches, we use Dijkstra-WSA, a parameterizable alignment algorithm which is largely resource- and language-agnostic. To demonstrate this, we apply our technique to GermaNet, the German equivalent to WordNet. The GermaNet sense clusterings we induce through alignments to various collaboratively constructed resources achieve a significant boost in accuracy, even though our method is far less complex and less dependent on language-specific knowledge than past approaches.
Author: | Michael Matuschek, Tristan Miller, Iryna Gurevych |
---|---|
URN: | https://nbn-resolving.org/urn:nbn:de:gbv:hil2-opus-2646 |
Parent Title (English): | Proceedings of the 12th edition of the KONVENS conference |
Document Type: | Conference Proceeding |
Language: | English |
Date of Publication (online): | 2014/10/22 |
Release Date: | 2014/10/22 |
Tag: | lexical resources; ontology |
GND Keyword: | Lexikalische Kategorie |
First Page: | 11 |
Last Page: | 21 |
PPN: | Link zum Katalog |
Contributor: | Faaß, Gertrud |
Institutes: | Fachbereich III / Informationswissenschaft und Sprachtechnologie |
DDC classes: | 400 Sprache / 400 Sprache, Linguistik |
Collections: | KONVENS 2014 / Proceedings of the 12th KONVENS 2014 |
Licence (German): | ![]() |