Volltext-Downloads (blau) und Frontdoor-Views (grau)

Tagging Complex Non-Verbal German Chunks with Conditional Random Fields

  • We report on chunk tagging methods for German that recognize complex non-verbal phrases using structural chunk tags with Conditional Random Fields (CRFs). This state-of-the-art method for sequence classification achieves 93.5% accuracy on newspaper text. For the same task, a classical trigram tagger approach based on Hidden Markov Models reaches a baseline of 88.1%. CRFs allow for a clean and principled integration of linguistic knowledge such as part-of-speech tags, morphological constraints and lemmas. The structural chunk tags encode phrase structures up to a depth of 3 syntactic nodes. They include complex prenominal and postnominal modifiers that occur frequently in German noun phrases.

Download full text files

  • Main Conference Proceedings of the 12th Konvens 2014

Export metadata

Additional Services

Share in Twitter    Search Google Scholar    frontdoor_oas
Metadaten
Author:Luzia Roth, Simon Clematide
URN:https://nbn-resolving.org/urn:nbn:de:gbv:hil2-opus-2673
Parent Title (English):Proceedings of the 12th edition of the KONVENS conference
Document Type:Conference Proceeding
Language:English
Date of Publication (online):2014/10/22
Release Date:2014/10/22
Tag:Chunking; Grammar; Parser; Syntax
GND Keyword:Chunking; Grammatik; Parser; Syntax
First Page:48
Last Page:57
PPN:Link zum Katalog
Institutes:Fachbereich III / Informationswissenschaft und Sprachtechnologie
DDC classes:400 Sprache / 400 Sprache, Linguistik
Collections:KONVENS 2014 / Proceedings of the 12th KONVENS 2014
Licence (German):License LogoCreative Commons - Namensnennung 3.0