Volltext-Downloads (blau) und Frontdoor-Views (grau)

Nessy: A Hybrid Approach to Named Entity Recognition for German

  • In this paper we present Nessy (Named Entity Searching System) and its application to German in the context of the GermEval 2014 Named Entity Recognition Shared Task (Benikova et al., 2014a). We tackle the challenge by using a combination of machine learning (Naive Bayes classification) and rule-based methods. Altogether, Nessy achieves an F-score of 58.78% on the final test set.

Download full text files

Export metadata

Additional Services

Share in Twitter    Search Google Scholar    frontdoor_oas
Metadaten
Author:Martin Hermann, Michael Hochleitner, Sarah Kellner, Simon Preissner, Desislava Zhekova
URN:https://nbn-resolving.org/urn:nbn:de:gbv:hil2-opus-3071
ISBN:978-3-934105-47-8
Document Type:Conference Proceeding
Language:English
Date of Publication (online):2014/11/25
Release Date:2014/11/25
Tag:NER; Named entity recognition
GND Keyword:Computerlinguistik
Source:Workshop Proceedings of the 12th KONVENS 2014
PPN:Link zum Katalog
Institutes:Fachbereich III / Informationswissenschaft und Sprachtechnologie
DDC classes:400 Sprache / 400 Sprache, Linguistik
Collections:KONVENS 2014 / Workshop Proceedings of the 12th KONVENS 2014
Licence (German):License LogoCreative Commons - Namensnennung 3.0