Refine
Document Type
- Doctoral Thesis (17)
- Book (4)
Keywords
- Blaulichtemission (1)
- Einflussgrössen (1)
- Intelligent Tutoring Systems (1)
- Invasive plant species (1)
- Kegelrobbe (1)
- Kiefergelenk (1)
- Knochemineraldichte (1)
- LED background illumination (1)
- LED-Hintergrundbeleuchtung (1)
- Leistungsmessungen (1)
Institute
- Fachbereich IV (21) (remove)
Skulls of 1,901 harbor seals from the North Sea were systematically investigated for dental, periodontal and cranial disorders as well as pathological changes of the temporomandibular joint (TMJ). Volumetric bone mineral density (vBMD) and microarchitecture of the mandible of a subsample of these specimens were analyzed in respect to age-related changes.
Age at death of examined seals ranged from 1 week to 25 years. Most of the specimens were collected in 1988, when the population suffered from a phocine distemper virus epizootic. Therefore, it is assumed that, contrary to other museum collections, only little overrepresentation of pathological skeletal condition is present in the analyzed death sample.
Age- and sex-related differences in the frequency and severity of pathological changes were observed in the dentition and the TMJ.
Intravital tooth loss, tooth fracture and periapical lesions were recorded more frequently in male seals than in femals. Lesions consistent with temporomandibular joint osteoarthritis (TMJ-OA) also occurred more frequently in males, while lesion severity tended to be higher in female specimens. Severity of TMJ-OA lesions was positively correlated with age.
Significant age-related changes in vBMD and several microarchitectural parameters were observed between individuals of the age classes “young juveniles” (0.5–10 months),“yearlings” (12–23 months),and “adults” (12–25 years),indicating an overall increase in cortical and trabecular area, cortical thickness as well as vBMD with age.
For juvenile animals (≤ 23 months), positive correlations with age were observed for cortical area and thickness, trabecular separation, as well as vBMD. Negative correlations with age existed for trabecular number and thickness as well as for trabecular bone volume fraction (BV/TV) in the juveniles. The findings suggest a reduction in BV/TV with age,due to the bone trabeculae becoming thinner,less numerous and more widely spaced. This detailed knowledge of age-related changes in the structure and mineralization of bones is an important prerequisite for interpreting osseous changes in wild mammals caused by external factors, as such as exposure to environmental contaminants.
The examination of large skeletal collections enables the observation also of rare pathological conditions. In the present investigation a case of anodontia,diagnosed as a manifestation of hypohidrotic ectodermal dysplasia was for the first time described in the harbor seal.
In five juvenile Baltic grey seals,severe osteomyelitis of the jaws was described for the first time. The condition was attributed to disturbed dentin formation,presumably of genetic causation, in the affected individuals.
The present study highlights the fact that systematic analyses of museum collections can provide important insights into the dental and skeletal pathology of wild mammals. These data can be used for reconstructing the health situation and living condition of past animal population.
Tropical wetlands maintain a high biodiversity and provide ecological services which are basis for millions of livelihoods. However, freshwater ecosystems are largely neglected in research and environmental policy. Today they are among the most threatened habitat types throughout the world with highest loss rates for natural inland wetlands in the tropics. The high dependency of local communities upon natural resources makes conservation management for wetlands in developing countries to a particular challenge.
This study investigated the different perspectives of conservation planning at Lake Alaotra, the largest wetland complex of Madagascar. First, the ecological state of Lake Alaotra was assessed to close knowledge gaps and to provide an adequate basis for ecosystem-based conservation measures. Second, I evaluated the community-led management of a small protected area in order to determine its potentials and weaknesses. Third, the local fishery, as the largest lake resource user group, was investigated to understand the drivers of overfishing.
By interlinking the results of the three perspectives of conservation planning – ecology, management and resource user – interrelations and trade-offs between the three dimensions were identified. The current ecological state of Lake Alaotra reveals that the anthropogenic disturbance is favoring the proliferation of invasive plant species and leading to the alteration of the water quality (e. g. hypoxia). Insights into the local management show that the community-based management contributes to the conservation of the natural flora and fauna. However, the small-scale conservation area suffers from isolation and illegal activities, while its management lacks recognition at community level. The fishery sector has grown dramatically although fish catches have fallen sharply. Species composition changes and low reproduction rates are reflecting the fishing pressure. A high population growth and lacking agricultural land force people to enter fishery and increases the human pressure on the lake.
Overall this study shows that the conservation of multiple-value ecosystems, such as tropical wetlands in developing countries, require site-specific multidimensional approaches that interlink ecological demands, resource user needs and the local sociocultural setting. This research demonstrates that: ongoing livelihood dynamics linked to the socio-economic conditions have to be considered to create more realistic management policies; strengthening resource users’ assets will help to decrease the human pressure on the already considerably altered ecosystem; capacity building for local management associations and the adoption of local ideas and management concepts is needed to enable the evolvement of an locally legitimated and tailored wetland conservation management.
In diesem Band enthalten:
S. 1 – 34
Eika Ehme & Sabine Panzer-Krause
Image und Stadtteilentwicklung: Attraktivierung innenstadtnaher Wohnviertel
für Studierende und identitätsstiftende Maßnahmen am Beispiel der
Hildesheimer Neustadt
S. 35 – 65
Michelle Kieselstein
Niedersächsische Lehrpfade – wie können traditionelle Bildungsinstrumente
eine Bildung für nachhaltige Entwicklung ermöglichen?
S. 66 – 90
Mischa Wittmar & Martin Sauerwein
Geoökologische Untersuchungen zur Immissionsbelastung des Stadtwaldes
Eilenriede (Hannover)
S. 91 – 123
Moritz Sandner, Robin Stadtmann & Martin Sauerwein
Möglichkeiten und Grenzen offener Fernerkundungsdaten und Open-Source-
Software zur Landbedeckungsklassifikation des Nationalparks Cinque Terre (Italien)
S. 124 – 129
Informationen aus dem Institut 2017 – 2018
This thesis focuses on cosmic rays and Nature of Science (NOS). The first aim of this work is to investigate whether the variegated aspects of cosmic ray research -from its historical development to the science topics addressed herein- can be used for a teaching approach with and about NOS. The efficacy of the NOS based teaching has been highlighted in many studies, aimed at developing innovative and more effective teaching strategies. The fil rouge that we propose unwinds through cosmic ray research, that with its century long history appears to be the perfect topic for a study of and through NOS.
The second aim of the work is to find out what knowledge the pupils and students have regarding the many aspects of NOS. To this end we have designed, executed, and analyzed the outcomes of a sample-based investigation carried out with pupils and students in Palermo (Italy), Tübingen and Hildesheim (Germany), and constructed around an open-ended questionnaire. The main goal is to study whether intrinsic differences between the German and Italian samples can be observed.
The thesis is divided in three parts. In the first part we reconstruct the intricate history of cosmic ray research. First, we present the initial studies that proceeded the discovery of Viktor Hess in 1912, and then the pioneer years of research that unveiled the phenomenological and interpretational features of cosmic radiation. We then continue with the history of the mature phase of cosmic rays research focusing on the discovery and characterization of extensive air showers.
In the second part of the thesis we first present the various aspects of NOS, including the operative definition adopted here and based on the 14 objectives proposed by McComas, Almazroa, and Clough. We then discuss the design, and execution of our sample-based investigation, finally we report in details the results of our analysis, performed with the MAXQDA software program.
In the third part of the thesis the aspects of cosmic ray research, in its historical, technological and cultural developments, are observed through the lens of NOS. We therefore highlight aspects, moments, episodes of cosmic ray research that might elucidate and substantiate, with examples and occasions for discussions, the 14 statements of McComas and collaborators, and we suggest some didactic objectives and units, which can be developed by pupils and teachers
The study of vegetation-plot data on a broad geographical scale is of increasing importance in vegetation science. It significantly contributes to the transnational characterisation of vegetation types as well as the better understanding of their large-scale patterns and to habitat typologies, which are important for decision-making processes in European nature conservation.
I examined semi-natural, saline and brackish Baltic Sea grasslands which occur on sedimentary flats at the transition between land and sea. Their diverse vegetation is dependent on low intensity grazing (Dijkema 1990). This valuable part of the European cultural landscape (Küster 2004), which is recognized as Annex I priority habitat type (Natura 2000; European Commission 2013), underwent an overall decrease in quality and quantity within the last 150 years, which is frequently related to abandonment. Thus, the coastal grasslands of the Baltic Sea have been assessed as Endangered in the European Red List of Habitats (Janssen et al. 2016).
Within this thesis I (i) developed a proposal to integrate vegetation data using non-standard scales into general vegetation analyses, (ii) characterised the vegetation of Baltic Sea grasslands on transnational level, (iii) regarded them from a North-west European perspective, (iv) discussed their nature conservation aspects on European scale, (v) investigated changes in their plant species composition and discussed its possible relation to cessation of grazing and (vi) formulated a monitoring concept important for management planning in nature conservation.
Ausgangspunkt ist eine markante Erhöhung der Anzahl Lektionen Mathematik und Deutsch in den Stundentafeln 2015 und 2017 in den Primarschulen (Grundschulen) des Kantons Nidwalden. Um die unmittelbaren Auswirkungen dieser quantitativen Steigerung auf die Fachleistungen zu erkennen, wurden Leistungstest eingesetzt. Es wird den Fragen nachgegangen, wie und in welchem Mass Leistungen durch die Stundentafelerhöhung, durch den Einsatz von Lernstandserhebungen und weiterer Einflussfaktoren zu Stande kommen.
Grundlage des Datenmaterials bildeten Lernstandserhebungen der Jahre 2015, 2016 und 2017 an den Primarschulen des Kantons Nidwalden (Schweiz). Im ersten Testjahr (2015) wurden keine mathematischen und sprachlichen Mehrlektionen erteilt. Diese kamen in den Folgejahren zuerst auf der Mittelstufe II (2016) und dann ein Jahr später auch auf der Mittelstufe I und der Unterstufe hinzu. An der Gesamtstudie nahmen über 3200 Lernende der zweiten, vierten und sechsten Klassen teil.
Das wissenschaftliche Material aus den Leistungstests besteht aus dichotomen Grunddaten, welche durch ein Einparameter-Modell (1 PL, Rasch-Modell) in Abhängigkeit eines Itemschwierigkeitsparameters verarbeitet wurden. Zur weiteren Auswertung der Leistungsmessdaten wurden sowohl einfache Varianzanalysen mittels t-Test wie auch Mehrebenenregressionanalysen durchgeführt. Für die Modellschätzungen der Stundentafelerhöhung in Bezug zur Leistung wurde auf Grund des komplexen Modellcharakters «nur» die Mehrebenenregression berücksichtigt. Die Daten der Vertiefung Mathematik konnten mittels Interdependenzanalyse untersucht werden.
Es bestätigte sich ein Trend, dass mehr Unterrichtszeit an der Primarschule auch zu besseren Leistungen führt. Weiter konnte geklärt werden, dass für Mathematik ein Modell aus den Parametern «Geschlecht», «Migration» und «Mehrstunden» signifikant erscheint. Der Parameter «Mehrstunden» beeinflusst sowohl die mathematische wie auch die sprachliche Leistung mit je rund 2 Prozent. Bei einem geschätzten Term in Mathematik von 510.78 Punkten werden 10.86 Punkte (p<.005) durch Mehrlektionen erklärt.
Für den Testbereich Deutsch musste das Modell mit der Stufenzugehörigkeit ergänzt werden. So werden bei einem geschätzten Term in Deutsch von 498.02 Punkten rund 8.29 Punkte (p<.014) durch Mehrlektionen begründet. Die ergänzte Stufen-Verfeinerung zeigt modellhaft auf, dass eine Mehrlektion in der Unterstufe (Test 2. Klasse) einen Mehrwert von rund 36.28 Punkten (p<.000) ergeben. Dies führt zur Erkenntnis, dass Mehrstunden im Fach Deutsch vor allem in unteren Klassen mit grösseren Leistungen einhergehen. Der erhöhte Zeitfaktor ist ein wichtiger Hebel zu besseren Leistungen im Allgemeinen.
Der erahnte Leistungsvorsprung der Knaben in Mathematik und der Mädchen in Deutsch konnte trotz Mehrstunden nicht verringert werden. Wohl profitierten beide Gruppen von Mehrstunden, doch zeigte sich keine Differenzverringerung.
Machine learning is often confronted with the problem of learning prediction models on a set of observed data points. Given an expressive data set of the problem to solve, using powerful models and learning algorithms is only hindered by setting the right configurations for both. Unfortunately, the magnitude of the performance difference is large, which makes choosing right configurations an additional problem that is only solved by experienced practitioners.
In this thesis, we will address the problem of hyperparameter optimization for machine learning and present ways to solve it. We firstly introduce the problem of supervised machine learning. We then discuss many examples of hyperparameter configurations that can be considered prior to learning the model. Afterwards, we introduce methods on finding the right configurations, especially those methods that work in the scheme of Bayesian optimization, which is a framework for optimizing black-box functions. Black-boxes are functions where for a given input one can only observe an output after running a costly procedure. Usually, in black-box optimization so-called surrogate models are learned to reconstruct the observations to then offer a prediction for unobserved configurations. Fortunately, recent outcomes show that transfering the knowledge across problems, for example by learning surrogates across different data sets being solved by the same model class, shows promising results.
We tackle the problem of hyperparameter optimization in mainly two different ways. At first, we consider the problem of hyperparameter optimization as a recommendation problem, where we want to learn data set features as well as their interaction with the hyperparameter configurations as latent features in a factorization based approach. We build a surrogate model that is inspired by the complexity of neural networks as well as the ability to learn latent embeddings as in factorization machines. Secondly, as the amount of meta knowledge increases every day, surrogate models need to be scalable. We consider Gaussian processes, as they themselves are hyperparameter free and work very well in most hyperparameter optimization cases. Unfortunately, they are not scalable, as a matrix in the size of the number of data points has to be inverted for inference. We show various methods of simplifying a Gaussian process by using an ensemble of Gaussian process experts, which is much faster to learn due to its paralellization properties while still showing very competitive performance.
We conclude the thesis by discussing the aspect of learning across problems in more detail than simply learning across different data sets. By learning hyperparameter performance across different models, we show that also model choice can be handled by the proposed algorithms. Additionally, we show that hyperparameter performance can even be transfered across different problem tasks, for example from classification to regression.
Die Elektromobilität gilt zunehmend als Hoffnungsträger zur Schadstoffreduktion im Verkehrssektor. Als prädestiniertes Einsatzfeld für Elektrofahrzeuge wird in der Literatur oft die gewerbliche Fahrzeugnutzung genannt, da diese sich durch rationale, wirtschaftlichkeitsorientierte Entscheidungsprozesse und gut vorhersagbare Mobilitätsbedarfe auszeichnet.
Fraglich ist bisher jedoch, ob Elektrofahrzeuge mit ihren Leistungscharakteristika, welche bezüglich Reichweite und Ladezeiten deutlich abweichen von den Eigenschaften herkömmlicher, mit fossilen Kraftstoffen betriebener Fahrzeuge, für den Betriebseinsatz geeignet sind. Auch auf die Frage, ob und unter welchen Bedingungen tatsächlich eine Schadstoffreduktion durch ihre Nutzung im Betriebskontext erzielbar ist, besteht in der Literatur bisher kein Konsens. Analog stellt sich die Frage nach den Rahmenbedingungen für ihren wirtschaftlichen Einsatz.
Als entscheidenden Faktoren für einen wirtschaftlichen wie ökologischen Betrieb von
Elektrofahrzeugen weisen Lebenszyklusbetrachtungen eine hohe Fahrzeugauslastung aus, die Herkunft des zum Betrieb genutzten Stroms ist daneben insbesondere für die ökologische Vorteilhaftigkeit entscheidend. Daher legt die vorliegende Arbeit ihren Fokus auf die Evaluation von Maßnahmen, die entsprechende Rahmenbedingungen für die Nutzung von Elektrofahrzeugen im Betriebskontext sicherstellen sollen. Dies sind ein Carsharingkonzept zur Auslastungssteigerung, sowie eine Eigenstromerzeugung am Betriebsstandort.
Als Metriken werden die Total Cost of Ownership der Fahrzeuge zur Ermittlung der Wirtschaftlichkeit, sowie die durch ihren Betrieb verursachten Lebenszyklusemissionen, umgerechnet in CO2-Äquivalente, zur Bemessung der ökologischen Auswirkungen des Fahrzeugbetriebs eingesetzt.
Das zu evaluierende Carsharingkonzept sieht eine Sekundärnutzung der Fahrzeuge außerhalb der Betriebszeiten vor. Begründet ist dieses Konzept in der Annahme, dass in diesem Zeitraum kaum eine betriebliche Fahrzeugnutzung vorliegt und somit Potential für eine Zweitnutzung besteht. Als prädestinierte Sekundärnutzer werden die Mitarbeiter des Unternehmens, welches den Fuhrpark unterhält, angenommen, da davon ausgegangen wird, dass sich ihr (privater) Mobilitätsbedarf zeitlich komplementär zum betrieblichen Mobilitätsbedarf verhält.
Für eine lokale Stromerzeugung wird exemplarisch die Photovoltaik verwendet. Dies wird mit der Annahme begründet, dass die Voraussetzungen für ihren Einsatz, verglichen mit anderen Methoden der nachhaltigen Stromerzeugung, am ehesten an einem generischen Betriebsstandort vorhanden sind.
Viele Landoberflächen im Mediterranraum sind durch wellige bis steile Hänge charakterisiert. Nichtsdestotrotz erfuhren die hängigen Landschaftselemente seitens der geomorphologisch-bodengeographischen Forschung in der Vergangenheit nur wenig Beachtung. Der bodengeographische Kenntnisstand beruht weitgehend auf der Untersuchung von (fast-)ebenen Landschaften, wie Flussund Meeresterrassen oder Plateau- und Beckenlagen. Entsprechend nehmen bodengenetische Entwicklungskonzepte kaum Bezug zur Substratgenese durch Umlagerungsprozesse am Hang. Ziel der Arbeit ist daher, die Bedeutung der Substratbildung als Voraussetzung für die natürliche Bodenentwicklung
auf Kalkgesteinen zu erfassen. Weiterführend wird anhand der Verbreitung von Substraten und der Abhängigkeit zur Pedogenese eine substratorientierte bodengenetische Modellvorstellung entwickelt.
Im Rahmen der vorliegenden Arbeit werden geomorphologisch-bodengeographische Untersuchungen am Fallbeispiel eines Hangsystems auf Kalkgesteinen in der portugiesischen Estremadura durchgeführt. Basierend auf bodengeographischen Geländeuntersuchungen mit vertiefter Analyse des petrographischen Spektrums aus Kalkgesteinsvarietäten werden Stoffflussbahnen entlang der den Hang gliedernden Dellensysteme identifiziert, die die Verbreitung von allochthonen Substraten in Zwischenspeicherpositionen determinieren. Bestätigt durch einfache physikochemische Laboruntersuchungen kann eine eindeutige Abhängigkeit des vorzufindenden Bodenmosaiks zur Substratgenese im Meso- bzw. Mikrorelief gezeigt werden, die vorrangig durch spülaquatische Hangumlagerungsprozesse und untergeordnet auch durch gravitativen Versatz gesteuert ist. Gesamtmetallquotienten, granulometrische Analysen und exemplarisch quantitative Phytolithbestimmungen bestätigen die Substratgliederung der Pedone. Auch mit Hilfe einer adaptierten Faziesneutralen Lagenbeschreibung (aFNL) als feldmethodisches Werkzeug zur Schichtabgrenzung in mediterranen Kalksteinböden kann der Nachweis einer eindeutigen Koinzidenz der Bodenentwicklung an die Substratgenese auf Kalkgesteinen geführt werden.
Die umfangreichen Aufschlussuntersuchungen zeigen auf der fast ebenen Hochfläche einen kleinräumigen Wechsel zwischen voll entwickelten Terra fuscae in allochthonen Substraten fuscae (ADHOC-ARBEITSGRUPPE BODEN 2005; IUSS WORKING GROUP WRB 2014: Calcaric Chromic Cambisol) und geringmächtigen (Locker-)Syrosemen oder (Para-) Rendzinen auf autochthonem Kalkgestein (AD-HOC-ARBEITSGRUPPE BODEN 2005; IUSS WORKING GROUP WRB 2014: Calcaric Regosols, (Renzic) Calcaric Leptosol). Die Verbreitung der Pedone entspricht der Verteilung von Karsttaschen und
-schlotten gegenüber den Festgesteinsdurchragungen.
Am Hang auf Kalkgesteinen sind ebenfalls allochthone Substrate (Hangsedimente) die Grundlage für die Verbreitung von Terra fuscae, die aber an die Verläufe von flachen Dellensystemen gebunden sind. Außerhalb der Dellen können auf autochthonen Carbonatgesteinen bzw. -aschen ebenfalls lediglich (Locker-)Syroseme oder (Para-)Rendzinen vorgefunden werden. In Unterhangbereichen treten meist eher flachgründige, selten auch mehrgliedrige, kolluviale Überdeckungen der Böden hinzu, die als Ergebnis anthropogen initiierter Bodenerosion der jüngeren Landschaftsgeschichte interpretiert werden.
Zur Erklärung des anzutreffenden Bodenmosaiks wird im Rahmen der Arbeit ein substratgenetisch orientiertes, konsequent allochthonistisches Bodenentwicklungsmodell in Anlehnung an LORZ (2008a, 2008b) entworfen, das prinzipiell auch auf andere Hanglagen im Mediterranraum übertragbar ist.
Aus der Befundlage ist zu konstatieren, dass das bodengeographische Muster regelhaft, ubiquitär und systematisch von der jeweiligen horizontalen und vertikalen Konfiguration der Ausgangssubstrate determiniert wird. Dabei wird Fern- und Lokalstaubeinträgen, die häufig als allochthone Komponente in bekannten autochthonen Pedogenesemodellen für den Mediterranraum einbezogen sind, nur eine untergeordnete Bedeutung beigemessen. Fortgeschrittenere Bodenentwicklungen, wie Terra fuscae, sind an allochthone Substrate (Hangsedimente; Regolithisierung) gebunden. Die Regolithisierung unter Einbeziehung von Pedosedimenten ist Voraussetzung für mächtigere und weiter entwickelte Böden (Terra fuscae) sowohl am Hang als auch auf der Hochfläche.
Grazing animals alter natural processes by affecting ecosystems and at the same time fulfilling ecosystem functions, thus they are regarded as ecosystem engineers. Effects of grazing are mainly studied in managed systems, where grazing animals are restricted in their movement and thus limited to certain vegetation types. On the island of Asinara the grazing system is now, due to its history as agro-penitentiary, a natural grazing system with donkeys, horses, goats, mouflons and wild boars. This multitude of grazers poses a challenge for the Asinara National Park and its management. Therefore this dissertation takes an interdisciplinary approach to investigate grazing animals and their interrelations with different components of the island ecosystem to analyse their role on the island and evaluate their effects on the biodiversity. The composition and distribution patterns of the five grazing animal species have been investigated in the context of the land-cover types of the island ecosystem. In addition, the input on the vegetation through endozoochorous seed dispersal by donkeys and goats was analysed, and the impact of grazing animals on dung beetle assemblages was studied in three highly frequented vegetation units, taking into account the intensity of use by the grazing animals. The results derived from this work highlight the importance of studying grazing animals and their interrelations within an island ecosystem. Moreover, the insights given in this thesis concerning the interrelations of grazing animals with different components of the island should open up the view on grazers and their multifaceted effects on the biodiversity, thus leading to management implementations for a sound functioning of the island ecosystem as well as the conservation and maintenance of biodiversity.
Infolge des gesellschaftlichen Wandels haben sich die Aufgaben und auch ihre Prioritätensetzung in der Pflegekinderhilfe verändert. Bspw. stellen sich die Ansprüche an erzieherische Fähigkeiten über die Pflegepersonen verfügen sollen, umfangreicher dar als noch vor Jahrzehnten. Zudem war eine Zusammenarbeit mit den Geburtseltern bis weit in das 20. Jahrhundert nicht vorgesehen. Gleichzeitig sind die bestehenden Beschreibungen der Pflegefamilie bis heute unscharf und in ständiger Veränderung darüber, wie eine (Pflege-) Familie aussehen soll, was sie charakterisiert, welche Aufgaben, welche Rollen vergeben werden. Die Forschung hat bisher zu wenig zur Weiterentwicklung beigetragen.
Angesichts dessen bestehen Widersprüche für derartige Ausprägungen, wenn die sich wandelnden und als Norm festgelegten Lebensweisen nicht mit den sie umgebenden Umwelten harmonieren. Ihre Auswirkungen treten verstärkt auf der operativen Ebene hervor.
Das vorliegende Forschungsprojekt hat Erstgespräche zwischen Fachkräften für Pflegekinder und Bewerbenden um ein Pflegekind evaluiert. Die in der Untersuchung freigelegten Ambivalenzen zeigen auf, dass sich einerseits die Anforderungen an den Pflegeauftrag gewandelt haben und andererseits diese veränderten Ansprüche offenbar in der Praxis noch nicht zufriedenstellend gelöst wurden. Deren Auftreten hat aber Auswirkungen u.a. auf die Herstellung eines gemeinsamen Arbeitsbündnisses in einem ersten Gespräch zur Aufnahme eines Pflegekindes sowie anschließend auf das Alltagsgeschehen während eines Pflegearrangements.
Die Ergebnisse dieses Forschungsprojekts können als Grundlage dienen, ein transparentes und an den Bedarfen von Pflegefamilien orientiertes Vorgehen zu generieren.
Arthropod herbivores act as mediators for effects that cascade up and down the trophic chain. Therefore, herbivory plays an important role for driving ecosystem processes and influencing ecosystem structures and functions. Generally, ecosystem processes are mediated by interactions between organisms. The plant community composition is influenced by competitive interactions among plants, which is affected by herbivore species. Leaf area loss to insects can reduce tree growth, but alters material flows from canopies to forest soils. Therefore, the chemical quality of litter is changed (increases in nitrogen content) through enhanced nutrient cycling rates caused by herbivory.
Climate and microclimate can affect insect physiology and behaviour directly or indirectly through climate-induced changes of host plants. Temperature determines the geographical range, site and timing of activities, success of oviposition and hatching, and the duration of developmental stages of arthropod herbivores. The activity of poikilothermic insects increases with temperature, and therefore growth and consumption rates are enhanced. However, morphological and functional leaf traits that determine host plant palatability often mediate indirect environmental effects on herbivory. Leaf palatability is determined by leaf toughness, nutrients, and defence compounds. In warm environments, expected high rates of arthropod herbivory can then be suppressed by negative changes of leaf traits.
Microclimate gradients are found across the different strata of forest ecosystems. Abiotic factors change vertically between forest layers due to a micro-environmental gradient. Along the vertical gradient, microclimate is affected by the light regime, with increasing temperatures and decreasing humidity from understorey to upper canopies. Various organisms are distributed along the vertical forest gradient based on changes in environmental conditions and in the quality and quantity of available resources. Temperate deciduous forests reveal highly stratified arthropod communities with vertical and horizontal distribution patterns. Microclimatic requirements and the availability of food resources along the vertical forest gradient can reflect spatial distributions and preferences of arthropods.
This research study investigated arthropod herbivory on leaves of deciduous tree species along the vertical gradient of temperate forests. A field study with ten forests sites in Central Germany and an experimental study in greenhouses were conducted, addressing effects of microclimate and leaf traits on arthropod herbivory. Juvenile and adult individuals of Fagus sylvatica L. (European beech), the dominant deciduous tree species in Central Europe, were chosen as main research subjects. Furthermore, Acer pseudoplatanus L. (Sycamore maple) and Carpinus betulus L. (hornbeam), two frequent tree species in the forest understorey, were also surveyed.
Social media has become an integral part of numerous individuals as well as organizations, with many services being used frequently by a majority of people. Along with its widespread use, the amount of information explodes when people use these services. This demands for efficient tools as well as methods to assist data management and retrieval.
Annotating resources by keywords, known as the tagging task, is a solution to improve categorizability and findability of resources. However, tagging is a human, time-consuming task, which requires the user's focus to figure out many keywords in a short moment and manually enter them into the system. To encourage users to tag their resources more correctly and frequently, tag recommendation is adopted into the social tagging systems to suggest relevant keywords for resources.
In this thesis, we will address the problem of personalized tag recommendation for images and present ways to solve this problem by combining the advantages of the user relation with the images' content. In order to suggest tags for unobserved images, their visual contents are used to replace the index-based information of the image entity in the tagging relations. Because the limitation of low-level features does not show the "content" of images, we propose to utilize a deep learning based approach to learn high-level visual features concurrently with the scoring-tag estimator. For the tag predictor, a latent factor model or a multi-layer perceptron is selected to compute scores of tags by which the top selected tags are sorted in descending order. As a further development upon our findings, we examine the inside and outside context of images to enhance the accuracy of estimators. Regarding the image-inside context, we are motivated by the fact that objects, such as cars or cats are influential on the user's selection criteria. Regarding the image-outside context, the image's surrounding text contributes to the clarity of the image's content for different users. We consider these contextual features as a supporting part which is combined with the mainly visual representation to enhance the tag recommendation performance. Finally, as an additional technique, transfer learning is also adapted to support the proposed models to overcome the limitations of too small training data and boost up their performance. This thesis demonstrates the usefulness and versatility of deep learning approaches for tag recommendation and highlights the importance of the learned image's content in predicting personalized tags. Directions for future work include semantic enhancements to context-based representation and extensions of the content-aware approaches to different recommendation scenarios.
Für die Hintergrundbeleuchtung bei Anzeigegeräten werden zunehmend LEDs eingesetzt. LEDs zeichnen sich durch eine lange Lebensdauer, geringe Energieaufnahme und kompakte Bauweise aus. Die hohe Emission des blauen Lichts im Spektrum von LEDs kann den menschlichen Organismus negativ beeinflussen.
Bei der vorliegenden Arbeit handelt es sich um die Konstruktion und Realisierung einer neuartigen LED-Hintergrundbeleuchtung unter Einsatz von LED-Clustern mit steuerbarem Farbspektrum. Das System wird über einen Micro-Controller gesteuert, der einen beliebig vorgegebenen tagesverlaufähnlichen Beleuchtungszustand unter Verwendung verschiedener Parameter wie Umgebungslicht, Tageszeit und Farb-wiedergabe aufrechterhält. Ziel ist es, die Blaulichtemission des Lichtspektrums präzise zu regeln.
Die Untersuchungen auf dem eigens hierfür entwickelten Prüfstand haben ergeben, dass die Blaulichtemission einer LED-Hintergrundbeleuchtung durch ein gesteuertes Farb-spektrum gezielt kontrolliert werden kann. Ein positiver Nebeneffekt ist die Möglichkeit, mit dieser Apparatur die Farbtemperatur und die Farbwiedergabe im Farbspektrum zu beeinflussen. Die erzielten Resultate werden insgesamt als Bestätigung für die Ma߬nahmen zur Reduzierung der Blaulichtemission gewertet.
Automating machine learning by providing techniques that autonomously find the best algorithm, hyperparameter configuration and preprocessing is helpful for both researchers and practitioners. Therefore, it is not surprising that automated machine learning has become a very interesting field of research.
Bayesian optimization has proven to be a very successful tool for automated machine learning. In the first part of the thesis we present different approaches to improve Bayesian optimization by means of transfer learning. We present three different ways of considering meta-knowledge in Bayesian optimization, i.e. search space pruning, initialization and transfer surrogate models. Finally, we present a general framework for Bayesian optimization combined with meta-learning and conduct a comparison among existing work on two different meta-data sets. A conclusion is that in particular the meta-target driven approaches provide better results. Choosing algorithm configurations based on the improvement on the meta-knowledge combined with the expected improvement yields best results.
The second part of this thesis is more application-oriented. Bayesian optimization is applied to large data sets and used as a tool to participate in machine learning challenges. We compare its autonomous performance and its performance in combination with a human expert. At two ECML-PKDD Discovery Challenges, we are able to show that automated machine learning outperforms human machine learning experts.
Finally, we present an approach that automates the process of creating an ensemble of several layers, different algorithms and hyperparameter configurations. These kinds of ensembles are jokingly called Frankenstein ensembles and proved their benefit on versatile data sets in many machine learning challenges. We compare our approach Automatic Frankensteining with the current state of the art for automated machine learning on 80 different data sets and can show that it outperforms them on the majority using the same training time. Furthermore, we compare Automatic Frankensteining on a large-scale data set to more than 3,500 machine learning expert teams and are able to outperform more than 3,000 of them within 12 CPU hours.
The water hyacinth (Eichhornia crassipes) is one of the top ten most invasive aquatic plant species in the world. Due to its worldwide distribution, the plant has caused tremendous damage on ecosystems and human livelihoods alike. These negative impacts are especially problematic for developing countries such as Madagascar. Considering the weak economic situation of the country, using water hyacinth to generate economic profits remains the last option to manage the species. We investigated the use of water hyacinth at Lake Alaotra, the largest lake in the country. This lake and the surrounding area are of great ecological and economic relevance for Madagascar. However, the isolation of the region and poverty limit water hyacinth use only to alternatives suitable to the weak local infrastructure. The goal of this research is firstly to identify suitable water hyacinth use options according to the local conditions and to compare them with the locally used raw materials. The first part of this research identified drivers and barriers for using water hyacinth in the region according to the prevailing socioeconomic conditions. It identified especially the use of water hyacinth as raw material for fertilizers and handicrafts as suitable alternatives for Lake Alaotra. Within the second phase, water hyacinth handicrafts were produced and compared with the predominantly used traditional papyrus handicrafts regarding production path and related costs. It was found that assembling water hyacinth handicrafts was easier and faster and they could be sold at three times the sale prices of the traditional papyrus handicrafts. Within the last part, fertilizers based on water hyacinth (composts, green manure and ash) were locally produced and compared with the commonly used agricultural fertilizers NPK and cow dung. This was done by conducting a growth experiment with Chinese cabbage, a common fast-growing vegetable in the region. Additionally, the production and transportation costs of each type of fertilizer were also taken into account. The results showed high biomass gain of cabbage grown with water hyacinth composts which was also proved be cheaper than using NPK and cow dung. All in all, this research demonstrated the efficiency of water hyacinth use as compost and handicraft as a new source of income for the Alaotra region. However, the poverty and high vulnerability of the local population must be considered along the process for a successful implementation of water hyacinth use at Lake Alaotra. A participatory approach and by offering financial insurance to the farmers during the implementation phase could encourage them to test water hyacinth compost on their own fields. Due to the various external factors influencing the marketing of water hyacinth handicrafts, an intensive and sustained supervision should be provided to the craftswomen.
In this thesis we design and test Learning Analytics algorithms for personalized tasks' sequencing that suggests the next task to a student according to his/her specific needs. Our solution is based on a sequencing policy derived from the Vygotsky's Zone of Proximal Development (ZPD), which denes those tasks that are neither too easy not too dicult for the student. The sequencer, called Vygotsky Policy Sequencer (VPS), can identify tasks in the ZPD thanks to the information it receives from performance prediction algorithms able to estimate
the knowledge of the student.
Under this context we describe hereafter the thesis contributions.
(1) A feasibility evaluation of domain independent Matrix Factorization applied in ITS for Performance Prediction.
(2) An adaption and the related evaluation of a domain independent update for online learning Matrix Factorization in ITS.
(3) A novel Matrix Factorization update method based on Kalman Filters approach. Two different updating functions are used: (a) a simple one considering the task just seen, and (b) one able to derive the skills' deficiency of the student.
(4) A new method for offline testing of machine learning controlled sequencers by modeling simulated environment composed by a simulated students and tasks with continuous knowledge and score
representation and different diffculty levels.
(5) The design of a minimal invasive API for the lightweight integration of machine learning components in larger systems to minimize the risk of integration and the cost of expertise transfer.
Profiting from all these contributions, the VPS was integrated in a commercial system and evaluated with 100 children over a month.
The VPS showed comparable learning gains and perceived experience results with those of the ITS sequencer. Finally, thanks to its better modeling abilities, the students finish faster the assigned tasks.
In diesem Band enthalten:
Hannah Graen, Robin Stadtmann & Martin Sauerwein: Modellierung von Temperaturdaten und Temperaturveränderungen
im Nationalpark Asinara, Sardinien (S. 1-27); Sarah Matheis, Nico Herrmann & Martin Sauerwein: Entwicklung eines Monitoringkonzeptes für Niedermoore am Beispiel des Bergen-Weißacker Moores, Süd-Brandenburg (S. 28-63); Martin Sauerwein, Jan-Philip Dieck & Robin Stadtmann: Urbane Böden im Kontext von Ecosystem Services (S. 64-89); Martin Sauerwein, Julia Jaquemotte & Lars Germershausen: Ursachen der Nitratbelastung des Grundwassers im Raum Hannover/Hildesheim (S. 90-110); Sabine Panzer-Krause: Einkaufen in der Hildesheimer Innenstadt. Auswirkungen der Arneken Galerie auf den innerstädtischen Einzelhandel (S. 111-132); Robin Stadtmann, Nico Herrmann, Jasmin Karaschewski & Martin Sauerwein: Bodenbewusstsein: Hildesheimer Aktivitäten zum Jahr des Bodens 2015 (S. 133-140)
Time series represent the most widely spread type of data, occurring in a myriad of application domains, ranging from physiological sensors up to astronomical light intensities. The classification of time-series is one of the most prominent challenges, which utilizes a recorded set of expert-labeled time-series, in order to automatically predict the label of future series without the need of an expert.The patterns of time-series are often shifted in time, have different scales, contain arbitrarily repeating patterns and exhibit local distortions/noise. In other cases, the differences among classes are attributed to small local segments, rather than the global structure. For those reasons, values corresponding to a particular time-stamp have different semantics on different time-series. We call this phenomena as intra-class variations. The lion's share of this thesis is composed of presenting new methods that can accurately classify time-series instances, by handling variations.
The answer towards resolving the bottlenecks of intra-class variations relies on not using the time-series values as direct features. Instead, the approach of this thesis is to extract a set of features that, on one hand, represent all the variations of the data and, on the other hand, can boost classification accuracy. In other words, this thesis proposes a list of methods that addresses diverse aspects of intra-class variations.
The first proposed approach is to generate new training instances, by transforming the support vectors of an SVM. The second approach decomposes time-series through a segment-wise convolutional factorization. The strategy involves learning a set of patterns and weights, whose product can approximate each sub-sequence of the time series. However, the main contribution of the thesis is the third approach, called shapelet learning, which utilizes the training labels during the learning process, i.e. the process is supervised. Since the features are learned on the training labels, there is a higher tendency of performing strongly in terms of predicting the testing labels. In addition, we present a fast alternative method for shapelet discovery. Our strategy is to prune segment candidates using a two step approach. First of all, we prune candidates based on their similarity towards previously considered candidates. Secondly, non-similar (hence diverse) candidates are selected only if the features they produce improve the classification results. The last two chapters of the thesis describes two methods that extract features from datasets having special characteristics. More concretely, we propose a classification method suited for series having missing values, as well as a method that extract features from time series having repetitive patterns.
Sara Dannemann & Nico Herrmann: Nachweis einer historischen Hohlweggallerie bei Alfeld/Leine (Südniedersachsen) anhand von Vermessungsergebnissen und bodengeographischen Feldaufnahmen
Moritz Sandner, Jasmin Karaschewski, Jan-Philip Dieck & Nico Herrmann: Genese einer linearen Hohlform auf Carbonatgestein im nördlichen Hildesheimer Wald – unter besonderer Berücksichtigung der Ausprägung periglazialer Lagen und der holozänen Pedogenese
Svenja Elfers & Sabine Panzer-Krause: Die Stadtentwicklung in Hildesheim im Zeichen des demographischen Wandels
Lien Lammers, Judith Lübcke & Sabine Panzer-Krause: Gestaltung und Pflege von Grünanlagen in benachteiligten Stadtquartieren: Welchen Beitrag leisten Stadtteilnetzwerke?