Refine
Year of publication
- 2006 (3)
Document Type
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Informatik (3)
In social bookmark tools users are setting up lightweight conceptual structures called folksonomies. Currently, the information retrieval support is limited. We present a formal model and a new search algorithm for folksonomies, called FolkRank, that exploits the structure of the folksonomy. The proposed algorithm is also applied to find communities within the folksonomy and is used to structure search results. All findings are demonstrated on a large scale dataset. A long version of this paper has been published at the European Semantic Web Conference 2006.
A key argument for modeling knowledge in ontologies is the easy re-use and re-engineering of the knowledge. However, current ontology engineering tools provide only basic functionalities for analyzing ontologies. Since ontologies can be considered as graphs, graph analysis techniques are a suitable answer for this need. Graph analysis has been performed by sociologists for over 60 years, and resulted in the vivid research area of Social Network Analysis (SNA). While social network structures currently receive high attention in the Semantic Web community, there are only very few SNA applications, and virtually none for analyzing the structure of ontologies. We illustrate the benefits of applying SNA to ontologies and the Semantic Web, and discuss which research topics arise on the edge between the two areas. In particular, we discuss how different notions of centrality describe the core content and structure of an ontology. From the rather simple notion of degree centrality over betweenness centrality to the more complex eigenvector centrality, we illustrate the insights these measures provide on two ontologies, which are different in purpose, scope, and size.
Recently, research projects such as PADLR and SWAP have developed tools like Edutella or Bibster, which are targeted at establishing peer-topeer knowledge management systems. In such a system, it is necessary to obtain brief semantic descriptions of peers, so that routing algorithms or matchmaking processes can make decisions about which communities peers should belong to, or to which peers a given query should be forwarded. This paper provides a graph clustering technique on knowledge bases for that purpose. Using this clustering, we can show that our strategy requires up to 58% fewer queries than the baselines to yield full recall in a bibliographic peer-to-peer scenario.